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a b s t r a c t 

Due to the Riemann solver free and avoiding characteristic decomposition, the central 

scheme is a simple and efficient tool for numerical solution of hyperbolic conservation 

laws (Nessyahu and Tadmor, J. Comput. Phys., 87(2):314-329,1990). But the theoretical 

Courant number CFL in order to preserve the invariant region of the numerical solution is 

very small, and there is lack of the stability proof for nonlinear systems. By adding a lim- 

iter on the reconstructed slope without requiring clipping condition, we enlarge the value 

of the CFL to admit larger time step. Then a widely applicable stability proof, which is suit- 

able for general hyperbolic conservation laws, is given by writing the evolved solution as 

convex combinations in terms of the Lax-Friedrichs scheme. Some numerical experiments 

are carried out to verify the robustness. 

© 2022 Elsevier Inc. All rights reserved. 

 

 

 

1. Introduction 

The hyperbolic conservation laws belong to an important class of partial differential equations ( PDE ) which take the form

u t + f (u ) x = 0 , u (x, t = 0) = u 0 (x ) (1) 

where u = (u 1 , u 2 , . . . , u p ) 
� ∈ R 

p is the conservative vector with p components, f = ( f 1 , f 2 , . . . , f p ) 
� is the flux function

which is assumed nonlinear and takes values in R 

p . 

The admissible states � of (1) is convex and forms an invariant set in the sense that 

u (x, t = 0) ∈ �, ∀ x ∈ R �⇒ u (x, t > 0) ∈ � ∀ x ∈ R . (2) 

The above property is called the invariant-region-preserving ( IRP ) principle. For the scalar problem, such principle becomes 

the minimum-maximum-preserving ( MMP ) principle, which is related to the entropy inequality that allows one to select 

the unique physical solution among the weak solutions [1] . For the nonlinear Euler equations describing the inviscid gas 

dynamics, it is called the positivity-preserving ( PP ) principle, which constrains the positivity of density, pressure, and internal 

energy. 

In the discrete level, we also require IRP principle of the numerical solution. Any numerical method that satisfies these 

constraints is usually called IRP in the literatures [2–13] . The objective of the present work is to put forward a type of IRP
∗ Corresponding author. 
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central scheme that is explicit in time, second-order accurate in both space and time. Compared with the upwind Godunov- 

type scheme [14–20] , the central scheme [21–24] requires no Riemann solvers or characteristic decomposition and provides 

a black box solver which can efficiently and universally simulate a wide variety of problems. 

The central scheme is the sequel to the first-order Lax-Friedrichs (LxF) scheme, which is IRP and total-variation- 

diminishing (TVD) and satisfies a discrete entropy inequality. To enhance the spatial accuracy order, Nessyahu and Tadmor 

[21] use MUSCL -type interpolations from the known staggered cell-averages at the current time level and give a second- 

order approximation of the flux according to the midpoint rule at the cell centers. The solution with lower diffusion than

that by the LxF scheme is evolved to the new time level at the staggered dual cell. The Nessyahu-Tadmor (NT) scheme gives

a higher-order approximation, which compensates for the typical excessive viscosity of the first-order LxF piecewise-constant 

solution. To transform the NT scheme into an unstaggered-central scheme, the authors reconstruct a piecewise-linear inter- 

polant through the calculated staggered cell-averages at the new time level and project it on the primal cells [24] . This

version of the central scheme not only retains the desirable advantages of the central scheme, but also avoids staggered

grids and hence is simpler to implement when complex geometries and boundary conditions are involved. There are also 

some other variations of the central scheme [25–29] . In recent years, the unstaggered-central scheme is applied to many

problems, such as idea magnetohydrodynamics (MHD) equations [30] , Euler equations with gravitation [31] , shallow water 

flows [32–36] . 

The stability of higher-order central schemes are discussed in many papers [21,23,24,28,29] . The scalar non-oscillatory 

properties of the second-order NT scheme were proved, including TVD, cell entropy inequality, and L 1 loc-error estimation. 

It does not increase the number of initial extremea(-as does the exact entropy solution operator). The local scalar MMP 

property is proved in [23] under the assumption that the slope limiter is clipping, which means that the neighboring discrete

slopes cannot have opposite signs, which is the key to estimate the difference between two neighboring midvalues. However, 

the clipping limiter reduces the scheme back to the first-order LxF scheme in an extreme cell because the limiter will set a

zero slope in this cell [29] . Additionally, the stable CFL number is too small: it is shown in [23] that CFL ≈ 0 . 1 for minmod

limiter (the generalized minmod with θ = 1 ) and CFL = 0 for the generalized minmod with θ = 2 in two-dimensional case.

A small CFL number results in a small time step which is disastrous for central scheme because the numerical viscosity is

proportion to O (1 / �t ) [25,29,37,38] . Although the extension of the systems is carried out by componentwise application of 

the scalar framework, the IRP principle of general systems and even the PP principle of Euler systems are lack of theoretical

analysis. Actually, many of the applications mentioned above are not IRP . For example, the application on the shallow water 

equations with wet-dry state is not positivity-preserving [34,35] which will be illustrated in [39] . 

In present paper, we will have an insight into the unstaggered-central scheme. Firstly, the clipping limiter for the initial

data reconstruction is replaced by an extended IRP limiter. After the non-oscillatory reconstruction, an IRP limiter [9,10] is 

applied to the reconstructed slopes such that the interpolation over the cell belongs to the invariant region. This extra lim-

iter does not disturb the accuracy order in the extreme cells. The second contribution is about the proof of the IRP property.

Instead of calculating the flux difference between two neighboring midvalues at the half time step using the reconstructed 

non-clipping slopes of both conservative variables and fluxes, we propose a so called forward-backward splitting method. It 

is an easy task to prove that the predicted value belongs to the invariant domain, which is achieved by rewriting the pre-

dicted value in the form of the LxF scheme. The most important part is the proof that the corrected value also belongs to

the invariant domain, which is the core of this paper. It is realized by rewriting the corrected value as a convex decomposi-

tion in terms of the LxF schemes solving a forward process of the PDE: u t + f (u ) x = 0 and the backward process of the PDE:

u t − f (u ) x = 0 . Finally, we prove that the updated solution belongs to the invariant region under a relaxed CFL condition.

The new stability technique and conclusion work for general IRP property including the MMP property for scalar problem 

and the PP property for the Euler equations. 

The structure of this paper is as follows. In Section 2 , we review the general procedure of the unstaggered-central

scheme. A new invariant-region-preserving limiter is defined and stability proof of the scheme is proved based on a forward- 

backward splitting method in Section 3 . Section 4 and Section 5 are about applications of the present scheme to one-

dimensional scalar equation and Euler equations, respectively. In Section 6 , numerical tests are shown to demonstrate the 

robustness of the proposed scheme. The conclusion is given in Section 7 . 

2. The second-order MUSCL-type unstaggered-central scheme 

In this section, we review the general procedure of the second-order MUSCL-type unstaggered-central scheme. 

Given a uniform grid x α := α�x of the domain, we define the primal cells I i := 

[ 
x 

i − 1 
2 
, x 

i + 1 
2 

] 
and the staggered dual cells

I 
i + 1 

2 
:= [ x i , x i +1 ] . We also denote by χα(x ) , the characteristic function of the cell I α , i.e. χα(x ) := 1 I α . The finite volume

schemes approximate the averages of solution in the primal cells 

u 

n 
i ≈ 1 

�x 

∫ 
I i 

u (x, t n ) dx. (3) 

The scheme evolves the numerical solution on a single grid, which avoids the staggered spatial grids and the solution of the

Riemann problems arising at the cell interfaces. The second-order unstaggered-central scheme includes three steps: forward 

projection, evolution and backward projection. 
2 
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Forward projection . In this step, the solution on the primal cells is projected onto the “ghost” staggered dual cells. To

enhance the spatial accuracy order, a piecewise-linear approximation ( MUSCL -type) of the solution is constructed from the 

primal cell-average 

L i (x ; u 

n ) = u 

n 
i + �u 

n 
i 

x − x i 
�x 

, ∀ x ∈ I i , (4) 

where �u 

n 
i 

≈ u (x 
i + 1 

2 
, t n ) − u (x 

i − 1 
2 
, t n ) denotes the limited spatial increments of the solution in primal cells I i . It is done by

a slope limiter method to ensure a non-oscillatory nature and second-order accuracy. The initial data reconstruction will be 

detailed in the next section. For the convenience of notation, we denote the sampled point values by 

u 

n,ϑ 
i 

= L i (x i + ϑ �x ; u 

n ) = u 

n 
i + ϑ�u 

n 
i for all − 1 

2 

≤ ϑ ≤ 1 

2 

. (5) 

We aim to calculate the staggered cell-average of the grid function (4) in this step: 

u 

n 
i + 1 2 

= 

1 

�x 

∫ 
I 

i + 1 
2 

∑ 

j 

L j (x ; u 

n ) χ j (x ) dx = 

1 

�x 

∑ 

j 

∫ 
I 

i + 1 
2 

⋂ 

I j 
L j (x ; u 

n ) dx. (6) 

Only two neighbouring primal cells I i and I i +1 have nonempty intersections with staggered cell I 
i + 1 

2 
, 

I i + 1 2 

⋂ 

I j = 

⎧ ⎨ ⎩ 

[ x i , x i + 1 2 
] , if j = i, 

[ x i + 1 2 
, x i +1 ] , if j = i + 1 , 

φ, otherwise . 

(7) 

Thus the integral in (6) can be exactly calculated ∑ 

j 

∫ 
I 

i + 1 
2 

∩I j L j ( x ; u 

n ) dx = 

∫ x i + 1 
2 

x i 
L i ( x ; u 

n ) dx + 

∫ x i +1 

x 
i + 1 

2 

L i +1 ( x ; u 

n ) dx 

= 

�x 
2 
L i 

(
x i + 1 4 

; u 

n 

)
+ 

�x 
2 
L i +1 

(
x i + 3 4 

; u 

n 

)
= 

�x 
2 

(
u 

n, 1 4 

i 
+ u 

n, − 1 
4 

i +1 

)
, 

which, divided by the cell length �x , gives the staggered cell-average 

u 

n 
i + 1 2 

= 

u 

n, 1 4 

i 
+ u 

n, − 1 
4 

i +1 

2 

. (8) 

These conclude the forward projection. 

Evolution . The second step is the key step of general central scheme whether the grids are staggered or not. The solution

on the primal cells at current time level t n is evolved onto the staggered dual cells at the new time level t n +1 . The procedure

can be written in a two-step predictor-corrector method. Integrating (1) on the rectangle I 
i + 1 

2 
× [ t n , t n +1 ] and substituting

the forward projected value u 

n 

i + 1 
2 

by (8) , the numerical solution u 

n +1 

i + 1 
2 

at time t n +1 in the staggered dual cells is obtained 

u 

n +1 

i + 1 2 

= u 

n 
i + 1 2 

− 1 

�x 

∫ t n +1 

t n 

(
f (u (x i +1 , τ )) − f (u (x i , τ )) 

)
dτ. (9) 

The second-order accurate mid-point quadrature rule is applied on the above temporal integrals for the fluxes at the cell 

centers: ∫ t n +1 

t n 
f (u (x i , τ )) dτ ≈ �t f (u 

n + 1 2 

i 
) , (10) 

where u 

n + 1 
2 

i 
is the predicted solution at the primal cell centers x = x i and at time t n + 

1 
2 = t n + 

1 
2 �t . The required midvalue

is given by the Taylor expansion 

u 

n + 1 2 

i 
≈ u 

n 
i −

�t 

2 

( ∂ x f ) 
n 
i , (11) 

where ( ∂ x f ) n i 
is the discrete derivative of the flux in the primal cell I i . To avoid the calculation of the Jacobian f ′ u , we proceed

with a straightforward computation by difference quotient 

( ∂ x f ) 
n 
i ≈ f (u 

n, 1 2 

i 
) − f (u 

n, − 1 
2 

i 
) 

�x 
, (12) 

in which the interpolated values u 

n, ± 1 
2 

i 
at the two boundaries of primal cell I i are obtained by (5) . Substituting the above

discrete derivative into (11) yields a simple and time-saving prediction step 

u 

n + 1 2 

i 
= u 

n 
i −

�t 

2 �x 

(
f (u 

n, 1 2 

i 
) − f (u 

n, − 1 
2 

i 
) 
)
. (13) 
3 
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Fig. 1. The procedure of unstaggered-central scheme. 

 

 

 

 

 

 

 

 

 

 

The integral of fluxes (10) is computed from the predicted value (13) and then substituted into (9) , which completes the

correction step 

u 

n +1 

i + 1 2 

= u 

n 
i + 1 2 

− �t 

�x 

(
f 
(
u 

n + 1 2 

i +1 

)
− f 

(
u 

n + 1 2 

i 

))
. (14) 

Backward projection . Finally, the updated solution in the “ghost” staggered cells is projected back into the primal cells 

resulting an unstaggered formulation. Similar to the forward projection, we reconstruct a piecewise-linear function from the 

staggered cell-average at time t n +1 : 

L i + 1 2 
(x ; u 

n +1 ) = u 

n +1 

i + 1 2 

+ �u 

n +1 

i + 1 2 

x − x i + 1 2 

�x 
, ∀ x ∈ I i + 1 2 

, (15) 

where �u 

n +1 

i + 1 
2 

≈ u (x i +1 , t 
n +1 ) − u (x i , t 

n +1 ) denotes the limited value which is the approximate spatial increment of the exact

solution in the staggered dual cells. The sampled point values are denoted by 

u 

n +1 ,ϑ 
i + 1 2 

:= L i + 1 2 
(x i + 1 2 

+ ϑ �x ; u 

n +1 ) = u 

n +1 

i + 1 2 

+ ϑ�u 

n +1 

i + 1 2 

for all − 1 

2 

≤ ϑ ≤ 1 

2 

. (16) 

The projected values, i.e. the updated values in the primal cells, are obtained after integrating the reconstructed solution 

(15) in the primal cells. Therefore, the primal cell-average is shown below 

u 

n +1 
i 

= 

u 

n +1 , 1 4 

i − 1 
2 

+ u 

n +1 , − 1 
4 

i + 1 2 

2 

. (17) 

We summarize the description of the algorithm as shown in Fig. 1 . The forward and backward projection steps are

fulfilled by (8) and (17) , respectively. The two-step predictor-corrector formulas for the evolution are done by (13) and (14) ,

respectively. The spatial accuracy is enhanced by the piecewise-linear initial data reconstruction. The temporal accuracy is 

achieved by the midpoint integral rule (10) of the flux. As a result, the scheme has second-order accuracy. In the next

section, we detail the initial data reconstruction and give the stability analysis. 

3. Stability analysis 

This paper only focuses on the stability of the second-order unstaggered-central scheme. To make the analysis valid for 

general IRP property, we introduce an extended IRP property of the slope limiter for the initial data reconstruction. The 

second novelty is the introduction of a convex splitting of the scheme, in which the convex splitting is a combination of

some LxF schemes. We call it the forward-backward decomposition. Finally, the stability result is proved under a suitable 

CFL condition which is larger than that used in [21,23,24] . The stability result works for general hyperbolic conservation

laws. 

3.1. IRP initial data reconstruction 

In [23] , a clipping limiter feature is the key to retain the MMP property at the reconstruction step for the scalar problem.

The limiter will reduce the scheme back to a first-order scheme in an extreme cell because the limiter will set zero slope

in this cell [29] . On the other hand, the clipping condition can not be extended to nonlinear systems. We will relax the

clipping requisition of the slope limiter. 
4 
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In the upwind-type scheme including WENO and DG, et. al., the slope limiters were proposed to preserve the MMP 

property for the scalar problem [9] and the PP property for the Euler equations [10] . Generally, these demands that the

reconstruction must be IRP inside every cell. 

Definition 3.1. A reconstruction is said IRP , if 

u 

n 
α ∈ � for all α �⇒ u 

n, ± 1 
2 

α ∈ � for all α (18) 

with α = i (resp. i + 

1 
2 ) for primal cells (resp. staggered dual cells). 

Due to the convexity of the domain �, an equivalent definition of IRP reconstruction is that any sampled state inside the

whole cell belongs to the invariant set: 

u 

n, ±ϑ 
α = L α(x α ± ϑ �x ; u 

n ) ∈ �, ∀ ϑ ∈ [0 , 
1 

2 

] . (19) 

Specially, the quantities u 

n, ± 1 
4 

α ∈ � used in forward and backward projection steps (8) and (17) , respectively. Actually, they

can be viewed as the average of the cell average value and cell boundary value 

u 

n, ± 1 
4 

α = 

1 

2 

u 

n 
α + 

1 

2 

u 

n, ± 1 
2 

α . (20) 

In order to improve the stability of the scheme, instead of the clipping condition we ask for a little bit more restriction

on the initial data reconstruction by extending the interpolation points outside to the neighbouring cells in the forward 

projection step. 

Definition 3.2. A reconstruction is said extended IRP , if there exists a parameter ϑ ≥ 1 
2 

u 

n 
i ∈ � for all i �⇒ u 

n, ±ϑ 
i 

∈ � for all i. (21) 

Due to the convexity of the � and the linearity of the reconstructed conservative variables, we immediately get that 

(21) implies (18) because u 

n, ± 1 
2 

i 
can be viewed as a convex combination of u 

n 
i 

and u 

n, ±ϑ 
i 

where ϑ ≥ 1 
2 . It means that an

extended IRP reconstruction must be IRP . 

By replacing the cell boundary state in (20) with the extrapolated quantity (21) , the quantities used in the forward

projection step (8) can be written as a new convex combination: 

u 

n, ± 1 
4 

i 
= 

1 

4 ϑ 

u 

n, ±ϑ 
i 

+ 

(
1 − 1 

4 ϑ 

)
u 

n 
i . (22) 

The implementations of the IRP limiter will be realized in Section 4 for scalar problem and in Section 5 for the Euler

systems, respectively. 

3.2. Solution’s convex decomposition 

The clipping condition for the slope limiter has been relaxed to the extended IRP , and then the technique of proof in

[23] cannot be used here. There is no difficulty in proving the stability of the predicted solution at the half time step in

the predictor step (13) . The main difficulty is proving the IRP property of the updated solution in the corrector step (14) . In

present part, we will introduce a convex decomposition of the updated solution. 

The Lax-Friedrichs scheme [40] is the prototype of the central scheme and many of its well-known stability properties 

are proved, including IRP principle, the TVD property, and the discrete entropy inequality. We will split the updated solution 

to be a convex summation of the reconstructed states at the initial time and some other states by the LxF scheme which

takes the form 

H(u , v , a ) := 

u + v 

2 

− a 

(
f (v ) − f (u ) 

)
, ∀ u , v ∈ �, a ∈ R. (23) 

The following lemma gives the decomposition. 

Lemma 3.3. (Forward-backward splitting) The updated solution by (14) in the staggered dual cell at the time level t n +1 is equiv-

alent to the following combination 

u 

n +1 

i + 1 2 

= 

1 
8 ϑ 

(
u 

n,ϑ 
i 

+ u 

n, −ϑ 
i +1 

)
+ κu 

n +1 , ( ∧ ) 
i + 1 2 

+ 

1 
2 

(
1 − 1 

4 ϑ 
− κ

)(
u 

n +1 , ( − 1 
4 , ∨ ) 

i + 1 2 

+ u 

n +1 , ( 1 4 , ∨ ) 
i + 1 2 

)
, 

(24) 

where u 

n, ±ϑ 
i 

are sampled quantities in (21) and 

u 

n +1 , (∧ ) 
i + 1 2 

= H 

(
u 

n + 1 2 

i 
, u 

n + 1 2 

i +1 
, 

�t 

κ�x 

)
, (25) 
5
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u 

n +1 , (± 1 
4 , ∨ ) 

i + 1 2 

= H 

(
u 

n, 1 2 

i + 1 2 ± 1 
2 

, u 

n, − 1 
2 

i + 1 2 ± 1 
2 

, 

κ
2 

1 − 1 
4 ϑ 

− κ

�t 

�x 

)
(26) 

for any given parameter κ . 

Proof. Using (22) , the summation of two sampled quantities in (24) takes the form 

u 

n,ϑ 
i 

+ u 

n, −ϑ 
i +1 

= 4 ϑ(u 

n, 1 4 

i 
+ u 

n, − 1 
4 

i +1 
) − (4 ϑ − 1)(u 

n 
i + u 

n 
i +1 ) . (27) 

Applying (23) to (25) , in which 

�t 
κ�x 

is in place of a , yields 

u 

n +1 , (∧ ) 
i + 1 2 

= 

u 

n + 1 2 

i 
+ u 

n + 1 2 

i +1 

2 

− �t 

κ�x 

(
f (u 

n + 1 2 

i +1 
) − f (u 

n + 1 2 

i 
) 
)
. (28) 

Substituting the predicted values u 

n + 1 
2 

i 
and u 

n + 1 
2 

i +1 
by (13) into the first two terms in the right hand side of above formula,

we obtain 

u 

n +1 , (∧ ) 
i + 1 2 

= 

u 

n 
i 

+ u 

n 
i +1 

2 

− �t 

4 �x 

i +1 ∑ 

I= i 

(
f (u 

n, 1 2 

I 
) − f (u 

n, − 1 
2 

I 
) 
)

− �t 

κ�x 

(
f (u 

n + 1 2 

i +1 
) − f (u 

n + 1 2 

i 
) 
)
. (29) 

Adding the two equations in (26) and applying (23) with 

κ
2 

1 − 1 
4 ϑ 

−κ
�t 
�x 

in place of a , it is derived that 

u 

n +1 , (− 1 
4 , ∨ ) 

i + 1 2 

+ u 

n +1 , ( 1 4 , ∨ ) 
i + 1 2 

= u 

n 
i + u 

n 
i +1 −

κ
2 

1 − 1 
4 ϑ 

− κ

�t 

�x 

i +1 ∑ 

I= i 

(
f (u 

n, − 1 
2 

I 
) − f (u 

n, 1 2 

I 
) 
)
. (30) 

Inserting terms (27), (29) and (30) into the right hand side of (24) , we obtain updated solution (14) , i.e. (24) holds. 

These conclude the proof. �

Remark 3.4. We can check that the summation (24) is convex if the parameter κ to be defined satisfies the following

inequality 

0 ≤ κ ≤ 1 − 1 

4 ϑ 

. (31) 

Remark 3.5. Formula (25) can be viewed as the solution of the forward process of the original PDE (1) : u t + f (u ) x = 0 , while

(26) can also be seen as solving the backward process: u t − f (u ) x = 0 . As a consequence, we call (24) the Forward-Backward

Splitting. 

3.3. Main results 

In this part, we will give main stability results. Using the proposed IRP limiter and the forward-backward splitting, we 

can simplify the proof of the stability. The stability condition will enlarge the CFL number which admits larger time step.

On the other hand, our stability results are suitable for general IRP property of the hyperbolic conservation laws including 

nonlinear systems. 

To verify the stability of the convex combination (24) of updated solution, we first need to know the stability property

of the LxF scheme (23) . 

Lemma 3.6. Given the flux function f (u ) and two states u , v in �. If there is a positive parameter a > 0 satisfying 

a · λ(u , v ) ≤ 1 

2 

with λ(u , v ) = max 
0 ≤θ≤1 

ρ(f ′ 
(
u + θ (v − u )) 

)
, (32) 

where ρ(f ′ (w )) is the spectral radius of the Jacobian f ′ (w ) for any w ∈ �. Then H(u , v , a ) ∈ �. 

In the case of the genuinely nonlinear or linearly degeneration, these local maximal speeds can be easily evaluated as 

λ(u , v ) = max 
(
ρ(f ′ (u )) , ρ(f ′ (v )) 

)
. (33) 

The proof of the Lemma 3.6 is omitted here and is referred to [40] . 

The following theorem is the main stability result which gives a sufficient condition for IRP property. 

Theorem 3.7. Given an extended IRP initial data reconstruction with the parameter ϑ ≥ 1 
2 . Under the assumption that 

�t 

�x 
max 

i 

(
λn 

i , λ
n + 1 2 

i + 1 2 

)
≤ CFL = 

√ 

3 − 1 
2 ϑ 

− 1 

2 

, (34) 
6 
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with λn 
i 

:= λ(u 

n, − 1 
2 

i 
, u 

n, 1 
2 

i 
) and λ

n + 1 
2 

i + 1 
2 

:= λ(u 

n + 1 
2 

i 
, u 

n + 1 
2 

i +1 
) , then the scheme is IRP : u n +1 

i 
∈ �. 

Proof. The IRP reconstruction enforces u 

n, ± 1 
4 

i 
∈ � and then u 

n 

i + 1 
2 

∈ �, which is on account of the convex combination of (8) .

We assert that 

u 

n +1 

i + 1 2 

∈ �. (35) 

Similarly, we have u 

n +1 , ± 1 
4 

i + 1 
2 

∈ � and u 

n +1 
i 

∈ � for the backward projection step. Thus the final conclusion is valid. 

We next focus on the discussion of (35) in the evolution step, which is done by a two-step predictor-corrector method. 

We first consider the predicted value by (13) at the half time step. By the linearity of the reconstructed solution (4) , we

can rewrite the predicted value by (13) in a form of (23) with 

�t 
2 �x 

in place of a 

u 

n + 1 2 

i 
= H 

(
u 

n, − 1 
2 

i 
, u 

n, 1 2 

i 
, 

�t 

2 �x 

)
. (36) 

By the Lemma 3.6 , we have u 

n + 1 
2 

i 
∈ � under the condition 

�t 

2 �x 
max 

i 
λn 

i < 

1 

2 

, (37) 

which is ensured by (34) . 

Secondly, we consider the corrector step by (14) at full time level t n +1 . By Lemma 3.3 , the corrected value has the

forward-backward splitting form (24) . The IRP reconstruction enforces u 

n, ±ϑ 
i 

∈ �. It is easy to check that κ = 2 · CFL , where

CFL defined in (34) is a root of the equation 

κ

2 

= 

1 − 1 
4 ϑ 

− κ

κ
. (38) 

Thus the condition (34) implies that 

�t 
κ�x 

max i λ
n + 1 2 

i + 1 2 

≤ CFL 
κ = 

1 
2 
, 

κ
2 

1 − 1 
4 ϑ 

−κ
�t 
�x 

max i λ
n 
i 

≤ κ
2 

1 − 1 
4 ϑ 

−κ
CFL = 

1 
2 
. 

(39) 

Applying Lemma 3.6 on (25) (resp. (26) ) can ensure u 

n +1 , (∧ ) 
i + 1 

2 

∈ � (resp. u 

n +1 , (± 1 
4 

, ∨ ) 
i + 1 

2 

∈ � where we have used the fact that

λ(u , v ) = λ(v , u ) for any two vectors u and v in �). On the other hand, all coefficients in (24) are positive by the choice of

κ and their summation equals one. Consequently, u 

n +1 

i + 1 
2 

∈ � since it is a convex combination of some quantities belonging 

to � by (24) . 

These conclude the proof. �

Remark 3.8. It can be seen that the time step calculated by (34) is an implicit value, because it depends not only on the

initial data u 

n, ± 1 
2 

i 
, but also on the predicted value u 

n + 1 
2 

i + 1 
2 

± 1 
2 

. In the real application, we can choose varying time steps. In the

predictor step, we compute the solution u 

n + 1 
2 

i 
= u 

n 
i 

− ̂ �t 
2 ( ∂ x f ) 

n 
i 

by (13) with time step 

̂ �t in place of �t . Here ̂ �t is obtained

by 

̂ �t = CFL 
�x 

max 
i 

λn 
i 

, (40) 

using the data u 

n, ± 1 
2 

i 
at the initial time t = t n . While the corrected solution u 

n +1 

i + 1 
2 

is computed by (14) with time step �t ,

which is obtained by 

�t = CFL 
�x 

max 
i 

(
λn 

i 
, λ

n + 1 2 

i + 1 2 

) (41) 

using the data u 

n, ± 1 
2 

i 
at the initial time t = t n and u 

n + 1 
2 

i + 1 
2 

± 1 
2 

at the half time step t = t n + 

1 
2 ̂

 �t . 

It is clear to see that �t ≤ ̂ �t . Thus the IRP principle stated in Theorem 3.7 still holds. On the other hand, ̂ �t =
�t + O( �t 2 ) is established because of u 

n + 1 
2 

i 
= u 

n 
i 

+ O( �t ) . Thus the error of the numerical integral in [ t n , t n + �t ] by (10) is

enforced to be O( �t 3 ) , even though u 

n + 1 
2 

i 
is sampled at t n + 

1 
2 ̂

 �t instead of at t n + 

1 
2 �t . Accordingly, the numerical accu-

racy order of the scheme is maintained. Another way to realize the stable time discretization with different time steps can

be found in [41] . 
7 
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Fig. 2. CFL numbers as a function of ϑ . 

 

 

 

 

 

 

 

 

 

 

 

Remark 3.9. The CFL conditions are sufficient conditions for IRP principle. We plot the CFL number as a function of ϑ in

Fig. 2 . Actually, the CFL number is increasing as a function of ϑ . As discussed before, IRP reconstruction is also extended

IRP if we set ϑ = 

1 
2 which activates CFL 

ϑ= 1 
2 

= 

√ 

2 −1 
2 ≈ 0 . 207 . If we set larger ϑ , then we can get larger CFL number and

larger time step. The possible largest value is CFL ϑ→∞ 

= 

√ 

3 −1 
2 ≈ 0 . 366 . But if ϑ > 

1 
2 , we need more serious restriction on the

reconstructed slopes obtained in the forward projection step. In the real application, we set ϑ = 

3 
2 resulting CFL 

ϑ= 3 
2 

≈ 0 . 316 .

The extended IRP limiters should be given for different systems. 

Remark 3.10. The proof by Nessyahu and Tadmor in [21] is only for scalar problem. The basis is that the reconstructed

conservative variables and fluxes are clipping, i.e. the neighboring discrete slopes can not have opposite signs. The proof 

technique is the mean-value theorem. Both their clipping reconstruction and proof technique are not suitable for nonlinear 

systems. In this paper, the extended IRP reconstruction is more practical, and the forward-backward splitting method is 

more adaptable. We will apply our method to scalar problem and Euler equations respectively in the upcoming sections. 

4. Application to scalar problems 

In this section, we apply our method to the scalar problem, i.e. p = 1 in (1) which becomes 

u t + f (u ) x = 0 , u (x, t = 0) = u 0 (x ) . (42) 

In this case, the invariant domain is an interval 

� = [ m, M] , (43) 

where m = min 

x 
u 0 (x ) and M = max 

x 
u 0 (x ) are the minimum and maximum values of the solution at the initial time, respec-

tively. The IRP principle becomes minimum-maximum-preserving (MMP) principle. 

To ensure non-oscillatory nature of the reconstruction and so as to avoid spurious oscillations in the numerical solution, 

one has to use a nonlinear limiter on the reconstructed piecewise-linear function in the forward and backward projection 

steps. 

In [23] , a clipping condition of the initial data reconstruction is the key to prove the MMP property for the scalar prob-

lem. This condition demands that the reconstructed slopes of the solution in two neighbouring cells have the same sign. It is

done by the generalized minmod method. Given cell-averages u α with α = i (resp. α = i + 

1 
2 ) on primal cells(resp. staggered

dual cells), the cell increments are estimated by 

�u α = minmod 

(
θ (u α − u α−1 ) , 

u α+1 − u α−1 

2 

, θ (u α+1 − u α) 
)
, (44) 

which is a three components function with a parameter θ . The minmod function is defined as: 

minmod (z 1 , z 2 , . . . ) := 

⎧ ⎪ ⎨ ⎪ ⎩ 

min 

j 
{ z j } , if z j > 0 ∀ j, 

max 
j 

{ z j } , if z j < 0 ∀ j, 

0 , otherwise . 

(45) 

The parameter θ ∈ [1 , 2] affects the numerical viscosity of the scheme. If θ = 1 , it degenerates to the original minmod limiter

which results in large viscosity. More robust choice is θ = 1 . 3 for many applications. 
8 
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It can be checked that the generalized minmod method satisfies the extended IRP property by setting ϑ = 

1 
θ

. Thus the

CFL in (34) will become 

CFL θ = 

√ 

3 − 1 
2 
θ − 1 

2 

. (46) 

This generalized minmod limiter (44) will reduces the scheme back to a first-order scheme in an extreme cell because 

the limiter will set zero slope in this cell [29] . On the other hand, the clipping condition can not be extended to nonlinear

systems. The more serious problem is applying the method to solve the non-convex problem resulting nonphysical solution 

near the joint point of a rarefaction wave and a shock wave. Thus an adaptive trick is added in the vicinity of the problem

points to switch back to the parameter θ = 1 [27] . 

Pioneered by the IRP property (21) , we realize the reconstruction in following two steps. The preliminary step is esti- 

mating the first-order accurate nonoscillatory slope in every cell. The second step is adjusting the preliminary reconstructed 

slope to enforce the MMP property. Without the clipping restriction we can realize the full second-order interpolation near 

the extreme point. 

• Preliminary step : We estimate the cell increments using the uniformly high-order nonoscillatory ( UNO ) limiter [24,42] 

�# u α := minmod 

(
�−u α + 

1 
2 

minmod 

(
�+ �−u α−1 , �+ �−u α

)
, 

�+ u α − 1 
2 

minmod 

(
�+ �−u α, �+ �−u α+1 

))
, 

(47) 

in which 

�−u α = u α − u α−1 , �+ u α = u α+1 − u α. 

The UNO limiter is the only limiter which is uniformly second-order accurate. The penalty of using the UNO limiter is

that it has a wider stencil(five points for computing numerical derivatives). And this limiter can give the correct solution 

for the nonconvex problems [24] . 
• Adjustment step : We next adjust the preliminary reconstructed slope to satisfy the extended IRP property (21) without 

violating the nonoscillation property and accuracy order of the interpolation. It can be done by setting 

�u α = sgn (�# u α) min 

(
| �# u α| , 1 

ϑ 

(M − u α) , 
1 

ϑ 

(u α − m ) 
)
, (48) 

where ϑ ≥ 1 
2 . 

The following properties of the adjustment can be checked. 
• The MMP property m ≤ u α ± ϑ�u α ≤ M is a direct result of the inequality 

1 

ϑ 

max (m − u α, u α − M) ≤ �u α ≤ 1 

ϑ 

min (M − u α, u α − m ) , (49) 

which is a conclusion of (48) . 
• The nonoscillation property is preserved because | �u α| ≤ | �# u α| and they have same sign. 
• The accuracy order of the limiter is preserved. The proof is referred to the paper [9] . 

Remark 4.1. The reconstruction method in the preliminary step is not limited to the generalized minmod and UNO. We can

use any other essential nonoscillatory limiters, e.g. van-Leer’s method [43] , ENO. 

Remark 4.2. Nessyahu and Tadmor [21] use the generalized minmod limiter (44) to give the initial data reconstruction due 

to its clipping property. They give the stability condition 

CFL NT 
θ = 

√ 

4 + 4 θ − θ2 − 2 

2 θ
, (50) 

which is related to the parameter θ in generalized minmod limiter (44) . 

We plot the different CFL numbers (50), (46) and (34) with ϑ = 

3 
2 in Fig. 3 for comparison. It can be seen that (50) is

more sharper than (46) for the stable CFL estimation. The reason is that the proof in [21] is taken full consideration of

the clipping condition. But clipping condition is not suitable for nonlinear systems. Actually our new estimation (46) is 

very close to (50) . An important thing is that our estimation is suitable for general systems. Another issue is that we can

choose any essential nonoscillation reconstruction for the preliminary reconstruction and then we can use the scalar ϑ in 

the adjustment step to enforce the MMP property. It gives us a new freedom to enlarge the CFL number. It can be calculated

that CFL NT 
θ=1 . 048 ≈ CFL 

ϑ= 3 
2 

= 0 . 316 which means that CFL 
ϑ= 3 

2 
> CFL NT 

θ when θ � 1 . 048 . 

5. Application to nonlinear systems 

In this section, we apply our method to solve the nonlinear Euler equations for the inviscid gas dynamics 

∂ t 

( 

ρ
ρu 

E 

) 

+ ∂ x 

( 

ρu 

ρu 

2 + p 
u (E + p) 

) 

= 

( 

0 

0 

0 

) 

, (51) 
9 
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Fig. 3. Comparison of CFL numbers by different methods. 

 

 

 

 

 

 

 

where ρ is the density of gas, u denotes the velocity, p represents the pressure, E = 

1 
2 ρu 2 + 

p 
γ −1 describes the energy. The

eigenvalues are λ± = u ± c with the sound speed c = 

√ 

γ p/ρ . So the maximum absolute eigenvalue is λ = | u | + c. In this

case, the invariant domain is 

� = 

{ ( 

ρ
ρu 

E 

) ∣∣∣∣ρ > 0 , p > 0 

} 

, (52) 

which means that both density and pressure should be positive. The IRP principle becomes the positivity-preserving (PP) 

principle. 

Similarly to the scalar case, we do the reconstruction in following two steps. The preliminary step is estimating the first-

order accurate nonoscillatory slope in every cell. The second step is adjusting the preliminary reconstructed slope to enforce 

the PP property. 

• Preliminary step : Because discontinuities may emerge in the solution even with continuous initial data, we should use a 

nonlinear characteristic limiter for the initial data reconstruction to avoid spurious oscillations in the numerical solution. 

We apply the uniformly high-order non-oscillatory ( UNO ) limiter (47) in each characteristic field. For the sake of nota-

tion, we use �# ρα , �# (ρu ) α and �# E α to denote the reconstructed cell increments of all conservative variables. Here

α = i stands for the reconstruction in the primal cells I i in the forward projection step, while α = i + 

1 
2 stands for the

reconstruction in the staggered dual cells I 
i + 1 

2 
in the backward projection step. 

• • Adjustment step : The reconstructed nonoscillatory cell increments does not ensure the positivity, i.e. the PP principle is 

destroyed, we need to modify them to obtain a second-order PP and extended PP reconstructions. In present paper, we 

adopt the method by Berthon [41] . For generality, we find a sufficient condition to realize positivity: 

ρα ± ϑ�ρα > 0 , (53) 

E α ± ϑ�E α −
(
(ρu ) α ± ϑ�(ρu ) α

)
2 

2(ρα ± ϑ�ρα) 
> 0 , (54) 

for any given constant ϑ ≥ 1 
2 , where (53) is for the positivity of reconstructed density, and (54) is for the positivity of

reconstructed pressure. Following [41] , the sum of two equations in (54) can be written as 

2 E α − 1 

2 

( (
(ρu ) α − ϑ�(ρu ) α

)
2 

ρα − ϑ�ρα
+ 

(
(ρu ) α + ϑ�(ρu ) α

)
2 

ρα + ϑ�ρα

) 

> 0 . (55) 

To find �ρα and �(ρu ) α satisfying the above inequality, we propose to consider �ρα such that 

2 E n α − 1 

2 

(
(ρu ) 2 α

ρα − ϑ�ρα
+ 

(ρu ) 2 α
ρα + ϑ�ρα

)
> 0 , (56) 

which deduces that 

ϑ | �ρα| < 

√ 

E α − 1 
2 
ρα(u α) 2 

E α
< 1 . (57) 
10 



R. Yan, W. Tong and G. Chen Applied Mathematics and Computation 436 (2023) 127500 

Table 1 

Example 1: linear advection problem (60) with continuous initial condition 

(62) . Numerical errors in different norms and the corresponding experimental 

orders of convergence (EOC) at time t = 10 . “# cells” stands for the number of 

cells. 

# cells L 1 error EOC L 2 error EOC L ∞ error EOC 

25 1.039E-1 - 8.091E-2 - 7.824E-2 - 

50 2.090E-2 2.313 1.565E-2 2.371 1.543E-2 2.342 

100 4.933E-3 2.083 3.841E-3 2.026 4.411E-3 1.806 

200 1.229E-3 2.006 9.333E-4 2.041 1.146E-3 1.944 

400 2.911E-4 2.077 2.219E-4 2.072 2.926E-4 1.969 

800 6.923E-5 2.072 5.321E-5 2.060 7.451E-5 1.974 

 

 

 

 

 

 

 

 

 

The inequality in (57) is used to modify the cell increment of density which is consistent with the PP condition. Next,

with the fixed �ρα , the inequality (55) gives a relevant choice of �(ρu ) α . Finally, the increment �E α is considered to

satisfy (54) . 

Based on the above discussion, we modify the reconstructed gradients of conservative variables as follows ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

�ρα = sgn (�# ρα) min 

(
1 
ϑ 
ρα

√ 

E α− 1 
2 ρα(u α ) 2 

E α
, | �# ρα| 

)
, 

�(ρu ) α = max 
(
ξ−, min 

(
ξ+ , �# (ρu ) α

))
, 

�E α = 

1 
ϑ 

max 

(
−E α + 

( (ρu ) α+ ϑ�(ρu ) α ) 2 

2(ρα+ ϑ�ρα ) 
, min 

(
E α − ( (ρu ) α−ϑ�(ρu ) α ) 2 

2(ρα−ϑ�ρα ) 
, ϑ�# E α

))
, 

(58) 

where ξ± are defined as follows 

ξ± = u α�ρα ± 1 

ϑ 

√ 

2 

(
E α − 1 

2 

ρα(u α) 2 
)(

ρα − (�ρα) 2 ϑ 

2 

ρα

)
. (59) 

6. Numerical experiments 

In this section, we test the performance of the unstaggered-central scheme with the proposed extended IRP limiter. 

Section 6.1 is devoted to examine the MMP property by applying the scheme to scalar conservation laws. In Section 6.2 , we

examine the PP property by applying the scheme to nonlinear Euler equations with γ = 1 . 4 . 

6.1. Scalar conservation laws 

In this section, we apply the proposed scheme to several scalar conservation laws. The numerical accuracies for con- 

tinuous problems for both linear advection equation and nonlinear Burgers’ equation are checked in Examples 1 and 2 ,

respectively. The capturing properties of discontinuous solutions are checked for both linear advection equation and non- 

linear Burgers’ equation in Examples 1 and 2 , respectively. We also check the ability of the convergence of the numerical

solutions to the unique physical entropy solution for nonconvex fluxes Examples 3 and 4, respectively. 

Example 1. We consider the linear advection equation, 

u t + u x = 0 , −1 ≤ x ≤ 1 (60) 

with some initial condition u (x, t = 0) = u 0 (x ) and periodic boundary conditions. This type of model problem has the exact

solution 

u (x, t) = u 0 (x − t) . (61) 

We first check the influence of the new limiter on the accuracy order when it is applied to continuous initial data. The

initial condition is 

u 0 (x ) = sin (πx ) . (62) 

The simulation is done until the final time t = 10 . Table 1 shows the L 1 , L 2 and L ∞ 

errors and the corresponding experimen-

tal order of convergence, respectively. The expected accuracy orders are achieved. 

To check the MMP property of the proposed scheme, we apply the scheme to the example proposed in [44] . This initial

condition is highly discontinuous 

u 0 (x + 0 . 5) = 

⎧ ⎨ ⎩ 

−x sin 

(
3 
2 
πx 2 

)
, if − 1 < x < − 1 

3 
, 

| sin (2 πx ) | , if | x | ≤ 1 
3 
, 

2 x − 1 − sin (3 πx ) / 6 , if 1 
3 

< x ≤ 1 . 

(63) 
11 
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Fig. 4. Example 1: linear advection problem (60) with discontinuous initial condition (63) . (a): numerical solution(marked as square) and exact solu- 

tion(marked as dashed line) at time t = 2 . (b): the numerical derivations of the minimum and maximum values from the exact ones. The numerical 

solution is obtained on 200 uniform cells. 

Table 2 

Example 2: Burgers’ equation (64) with initial condition (65) . Numerical er- 

rors and experimental orders of convergence in different norms at time t = 0 . 5 

before the discontinuity comes. The reference solution is obtained on 25,600 

meshes. 

# cells L 1 error EOC L 2 error EOC L ∞ error EOC 

25 2.045E-2 - 2.314E-2 - 4.729E-2 - 

50 3.724E-3 2.457 5.091E-3 2.184 1.849E-2 1.355 

100 9.806E-4 1.925 1.378E-3 1.885 5.927E-3 1.642 

200 2.239E-4 2.131 3.310E-4 2.058 1.620E-3 1.872 

400 4.703E-5 2.251 6.993E-5 2.243 3.565E-4 2.184 

800 9.361E-6 2.329 1.384E-5 2.337 6.480E-5 2.460 

 

 

 

 

 

 

 

 

 

The simulation is done on 200 uniform cells until final time t = 2 . Fig. 4 (a) shows the numerical result compared with

the exact solution. The numerical solution reproduces the discontinuities correctly. In Fig. 4 (b), we study the numerical 

deviations of the maximum and minimum values from the exact ones. It shows that they are preserved in the sense that

max x u (x, t) ≤ M and min x u (x, t) ≥ m , where M and m are the maximum and minimum values of the solution at the initial

time, respectively. 

Example 2. We consider the inviscid Burgers’ equation 

u t + 

(
u 

2 

2 

)
x 

= 0 (64) 

in the domain [ −1 , 1] with the initial condition 

u 0 (x ) = 

1 

4 

+ 

1 

2 

sin (πx ) (65) 

and the periodic boundary conditions. This example is selected from [9] . The solution is smooth up to time t = 

2 
π , then

it develops a moving shock which interacts with a rarefaction wave. At t = 2 the interaction between the shock and the

rarefaction waves is over, and the solution becomes monotone between the shocks. 

The simulation is done on 200 uniform cells. The reference solution is obtained on 25,600 cells. At time t = 0 . 5 , we

list the errors in different norms in Table 2 . We can clearly see the expected numerical accuracy orders. The numerical

results at different time t = 

2 
π , 2 and 4 are plotted in Fig. 5 (a), (b) and (c), respectively. The moving shock is captured and

resolved. Fig. 5 (d) shows the numerical deviations of the maximum and minimum values from the initial ones. The solution

is symmetric along the line y = 0 . 25 , thus two deviations coincide. The MMP principle is verified. 

Example 3. In this test we solve the one-dimensional scalar conservation laws with the nonconvex Buckley-Leverett flux 

f (u ) = 

4 u 

2 

4 u 

2 + (1 − u ) 2 
(66) 

in the domain [ −1 , 1] with the initial condition 

u 0 (x ) = 

{
1 , −0 . 5 ≤ x ≤ 0 , 

0 , otherwise. 
(67) 
12 
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Fig. 5. Example 2: Burgers’ equation (64) with initial condition (65) . (a–c): numerical solution(marked as square) and referenced solution(marked as dashed 

line) at different times; (d): the numerical derivations of the minimum and maximum values from the initial ones. The numerical solution is obtained on 

200 uniform cells. The reference solution is obtained on 25,600 cells. 

Fig. 6. Example 3: the scalar conservation laws with the nonconvex Buckley-Leverett flux (66) and initial condition (67) . (a): numerical solution(marked 

as square) and referenced solution(marked as dashed line) at time t = 0 . 4 ; (b): the numerical derivations of the minimum and maximum values from the 

initial ones. The numerical solution is obtained on 200 uniform cells. The reference solution is obtained on 25,600 cells. 

 

 

 

 

 

 

and out flow boundary conditions. This example is also widely discussed by the literatures, e.g. [9,24,27] . The finial time is

t = 0 . 4 . We use this test to check the convergence of the numerical solutions to the physically correct entropy solutions. 

Because of the nonconvexity of the flux function, it is possible to form the composite waves [27] . A generic case of the

composite waves in this example is a shock adjacent to a rarefaction wave. A numerical scheme that uses a compressive

limiter, such as the generalized minmod limiter with θ > 1 , may result in nonphysical solution. We follow the method

proposed in [27] and adapt the uniformly high-order non-oscillatory(UNO) limiter (44) . 

The reference solution is obtained using 25,600 cells. The computational result on 200 uniform cells is displayed in Fig. 6 .

Fig. 6 (a) shows the numerical solution which is quite satisfactory. The numerical deviation of the maximum and minimum 

values is shown in Fig. 6 (b). The minimum value is exactly the same as the initial minimum value. The maximum value is

smaller than the initial maximum value. 

Example 4. This is another widely used one-dimensional scalar conservation laws with non-convex flux 

f (u ) = 

1 

(u 

2 − 1)(u 

2 − 4) . (68) 

4 
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Fig. 7. Example 4: the scalar conservation laws with the nonconvex flux (68) and initial condition (69) . (a): numerical solution(marked as square) and 

referenced solution(marked as dashed line) at time t = 1 ; (b): the numerical derivations of the minimum and maximum values from the initial ones. The 

numerical solution is obtained on 200 uniform cells. The reference solution is obtained on 25,600 cells. 

Table 3 

Example 5. Euler equations with initial condition (70) . Numerical errors and 

experimental orders of convergence in different norms at time t = 0 . 2 . The 

reference solution is obtained on 25,600 meshes. 

# cells L 1 error EOC L 2 error EOC L ∞ error EOC 

25 9.092E-2 - 4.398E-2 - 4.005E-2 - 

50 1.084E-2 3.068 6.420E-3 2.776 7.630E-3 2.392 

100 6.016E-4 4.171 2.665E-4 4.590 1.506E-4 5.663 

200 1.580E-4 1.929 6.999E-5 1.929 3.949E-5 1.931 

400 4.043E-5 1.966 1.792E-5 1.966 1.011E-5 1.966 

800 1.022E-5 1.984 4.528E-6 1.985 2.555E-6 1.984 

1600 2.562E-6 1.996 1.135E-6 1.996 6.405E-7 1.996 

 

 

 

 

 

 

 

 

We consider the initial condition 

u 0 (x ) = 

{
2 , x ≤ 0 , 

−2 , x > 0 

(69) 

and nature boundary conditions. The finial time is t = 1 . There are also composite waves with adjacent shock and rarefaction

waves. The adaptive limiter proposed in [27] is used. 

The reference solution is obtained using 25,600 cells. The computational result on 200 uniform cells is displayed in Fig. 7 .

Fig. 7 (a) shows the numerical solution which is quite satisfactory. The numerical deviations of the maximum and minimum 

values is shown in Fig. 7 (b). The maximum and minimum values are exactly same with initial ones. 

6.2. Nonlinear Euler equations 

In this section, we examine the proposed scheme for compressible Euler equations. The numerical accuracy for continu- 

ous problem with very low density and low pressure is checked in Example 5. We apply the scheme to the Sod shock tube

problem in Example 6 to check higher resolution property. Then a new 123 problem which generates vacuum state in the

middle in Example 7 is designed to check the PP property. Next, a Leblanc shock tube problem in Example 8 is considered

to check the property of our scheme to resolve the waves with large ratios of density and pressure. Finally, a Sedov blast

wave problem in Example 9 which is a typical low density problem involving strong shocks is given to demonstrate the

ability to capture shock. 

Example 5. Consider a low density and low pressure problem. The initial condition is 

ρ0 (x ) = 1 + 0 . 99 sin (x ) , u 0 (x ) = 1 , p 0 (x ) = 0 . 01 . (70) 

The domain is [0 , 2 π ] and the boundary conditions are periodic. The final time is t = 0 . 2 . 

The L 1 , L 2 and L ∞ 

errors and the corresponding experimental orders of convergence are listed in Table 3 , respectively.

We observe the designed order of the accuracy of this problem with low density and low pressure. 

This indicates that the practical time step selection mentioned in Remark 3.8 maintains the numerical accuracy. 

Example 6. This is the famous Sod shock tube problem introduced in [45] . The initial condition is 

(ρ, u, p) = 

{
(1 , 0 , 1) , if x < 0 . 5 , 

(0 . 125 , 0 , 0 . 1) , if x > 0 . 5 . 
(71) 
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Fig. 8. Example 6 . Numerical solution (marked as square) and referenced solution (marked as dashed line) of Euler equations with initial condition (71) at 

time t = 0 . 25 : (a) density; (b) zoomed density; (c) velocity; (d) pressure. The solution is obtained on 200 uniform meshes. 

 

 

 

 

 

 

 

 

 

 

 

 

The domain is [0,1] and the zero extending boundary condition is applied. The final time is t = 0 . 25 . The solution consists

of a left rarefaction, a contact and a right shock. 

We do the simulation on 200 uniform meshes. The numerical solutions of density, velocity, pressure are shown in Fig. 8 .

We can see that all three waves are captured. In Fig. 8 (b), we plot the zoomed figure of the density in the region [0.59,1]

from where no oscillation is observed across the discontinuities including both contact and shock. 

Example 7. We consider 123 problem in [45] which has two rarefaction waves. Different from the traditional case, the initial

condition will generate vacuum state in the middle. The initial condition is 

(ρ, u, p) = 

{
(1 , −2 , 0 . 15) , if x < 0 . 5 , 

(1 , 2 , 0 . 15) , if x > 0 . 5 . 
(72) 

The domain is [0,1] and the zero extending boundary condition is applied. The final time is t = 0 . 15 . 

We do the simulation on 200 uniform meshes. The numerical solutions of density, velocity, pressure are shown in Fig. 9 .

The two rarefaction are captured. The low density and low pressure in the middle region near the origin (Vacuum) are

also captured by proposed scheme. We also observe that the new origin of the velocity is also captured. We also plot the

minimums of both density and pressure as functions of time in Fig. 9 (d), which shows that the PP property is maintained

in the whole simulation. 

Example 8. We consider a Leblanc shock tube problem which is selected from references [10,46] . Similar discussion is done

in [47] . The initial condition is 

(ρ, u, p) = 

{
(10 0 0 , 0 , 10 0 0) , if x < 0 , 

(1 , 0 , 1) , if x > 0 . 
(73) 

The domain is [ −10 , 10] and the zero extending boundary condition is applied. The final time is t = 10 −4 . The solution 

consists of two strong rarefaction waves and a trivial stationary contact discontinuity. 

For such shock tube problem with initial high pressure and high density ratios, the popular high resolution schemes 

worked very inefficiently. The increasing scheme accuracy did not improve the results much and the numerical smearing 

at the contact discontinuity did not attribute much to this defect [46] . In order to better solve the problem, the authors

use the exact solution of u (x, t 0 ) = u 

R (x, t 0 ) as the initial condition at t 0 , which is bigger than the critical time t cr . If the

exact solution of t < t cr is used as the initial condition, the high resolution schemes are unable to provide the correct shock
0 
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Fig. 9. Example 7 . Numerical solution (marked as square) and referenced solution (marked as dashed line) of Euler equations with initial condition (72) at 

time t = 0 . 15 : (a) density; (b) velocity; (c) pressure; (d) minimums of density and pressure. The solution is obtained on 200 uniform meshes. 

Fig. 10. Example 8 . Numerical solution (marked as square) and referenced solution (marked as dashed line) of Euler equations with initial condition (73) at 

time t = 10 −4 : (a) density; (b) zoomed density; (c) velocity; (d) pressure. The solution is obtained on 800 uniform meshes. 
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Fig. 11. Example 9 . Numerical solution (marked as square) and referenced solution (marked as dashed line) of Euler equations at time t = 0 . 001 : (a) 

density; (b) velocity; (c) pressure. The solution is obtained on 800 meshes. 

 

 

 

 

 

 

 

 

 

 

 

location. In this example, we take t 0 = 3 × 10 −6 as the critical time. We do the simulation on 800 uniform meshes and the

results are shown in Fig. 10 . 

Example 9. The Sedov blast wave is chosen from reference [10,48] and it is a typical low density problem involving two

very strong shocks. For the initial condition, the density is 1, velocity is zero, total energy is 10 −12 everywhere except that

the energy in the center cell is the constant 
E 0 
�x 

with E 0 = 320 0 0 0 0 (emulating a δ−function at the center). The final time

is t = 0 . 001 . We do the simulation on 800 uniform meshes and the results are shown in Fig. 11 , the minimum density in

Fig. 11 (a) is 2 . 49 × 10 −2 . We can see the shock is captured very well even with the time step proposed in Remark 3.8 . The

results are comparable to the results in references [10,48] . 

7. Conclusion 

In present paper, the emphasis is on an applicable stability analysis of invariant-region-preserving (IRP) principle. The 

proof is given by a so called forward-backward splitting method. Specifically, the evolved solution is decomposed into sev- 

eral terms, which is a convex combination of the extrapolated states and other states in the forms of the Lax-Friedrichs

scheme. These states are obtained by solving the forward and backward processes of the original PDE. With the extended 

IRP limiter applied to the reconstructed slopes in the forward projection step, a relatively relaxed CFL number is obtained, 

which also implies a larger time step. The extended IRP limiter and method of the stability analysis are available to both

scalar equation and general nonlinear systems. The main properties of the present scheme are checked by a series of nu-

merical experiments. Here we want to illustrate that the stability condition may not be optimal, which needs to be clarified

in the future. The next work is to extend the present IRP scheme to multi-dimensional cases and apply it to solve other

nonlinear systems. 
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